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Abstract: The article examines the problem of optimizing the processes of transferring, sorting, and packaging 
paper sheets along a conveyor in printing enterprises using a robot manipulator. The main issue highlighted is the 
lack of mathematically grounded control algorithms that properly link conveyor speed, paper flow intensity, and 
the robot manipulator’s operational cycle. As a result, paper jams, robot idle time, and defect rates increase. In the 
article, the movement of paper on the conveyor is expressed using basic differential equations, while the flow 
intensity is modeled through the M/M/1 queueing theory framework. Based on the kinematic and dynamic models 
of the robot manipulator, a jerk-limited trajectory planning algorithm is proposed. Simulation results conducted in 
the MATLAB/Simulink environment show that the proposed algorithm keeps the load coefficient of the conveyor–
robot system around ρ = 0.73, reduces the queue length from 20 to 2.7 items, and decreases the frequency of paper 
jams by up to 40%. 

 

Keywords: Robot manipulator, printing industry, paper flow, M/M/1 queue, control algorithm, optimization, 
conveyor, MATLAB. 

 

INTRODUCTION:

In modern printing enterprises, processes such as 
cutting, printing, folding, sorting, and packaging are 
performed at high speed. In particular, executing the 
operations of sorting and packaging paper sheets 
manually limits production efficiency, increases 
dependence on human factors, and raises the defect 
rate. Therefore, the implementation of robot 
manipulators to manage paper flow has become a 
highly relevant task. 

In many existing methods, the robot manipulator 
operates in a “fixed-cycle” mode: the conveyor moves 
at a constant speed, and the robot picks up the sheet 
and places it into a package at predetermined 
intervals. Since variations in conveyor speed, changes 
in sheet size depending on the type of order, 
temporary stops, or sheet sticking are not taken into 

account, the probability of paper jams increases, and 
the robot sometimes performs “idle motions” when 
no sheet has arrived yet. As a result, the accuracy and 
quality of packaging decrease. 

This article develops control algorithms that connect 
the conveyor paper flow and the robot manipulator’s 
motion within a unified mathematical model, adapt 
to flow intensity, and ensure sheet handling without 
damage. The work involves mathematical modeling 
of paper flow using differential equations and 
queueing theory, synthesizing a jerk-limited 
trajectory planning algorithm based on the kinematic 
and dynamic model of the robot manipulator, and 
evaluating their efficiency through simulation. 

METHOD 

We assume that the conveyor speed vc(m/s) is 
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constant. The position x(t) of a single sheet along the 
conveyor is described using the Galilean motion 

model as follows: 

the coordinate is the time integral of the velocity: 

 

𝑑𝑥

𝑑𝑡
= 𝑣𝑐 , 𝑣𝑐 =  const.  

Integrating this simple differential equation, we obtain: 

∫  𝑑𝑥 = ∫  𝑣𝑐𝑑𝑡 ⇒  𝑥(𝑡) = 𝑣𝑐𝑡 + 𝐶 

As the initial condition, let the sheet arrive at point x0 on the conveyor at time t = 𝑡𝑖
(0): 

𝑥 (𝑡𝑖
(0)) = 𝑥0 = 𝑣𝑐𝑡𝑖

(0) + 𝐶 ⇒  𝐶 = 𝑥0 − 𝑣𝑐𝑡𝑖
(0) 

Thus, for the sheet: 

𝑥𝑖(𝑡) = 𝑣𝑐𝑡 + 𝑥0 − 𝑣𝑐𝑡𝑖
(0) = 𝑥0 + 𝑣𝑐 (𝑡 − 𝑡𝑖

(0)) 

The robot manipulator picks up the sheet at point xp . Therefore, the pickup time   𝑡𝑖
(𝑝)

 is obtained from the 

following equation: 

𝑥𝑖 (𝑡𝑖
(𝑝)
) = 𝑥𝑝  ⇒  𝑥0 + 𝑣𝑐 (𝑡𝑖

(𝑝)
− 𝑡𝑖

(0)
) = 𝑥𝑝 

is determined from the following equation: 

𝑥𝑖 (𝑡𝑖
(𝑝)
) = 𝑥𝑝  ⇒  𝑥0 + 𝑣𝑐 (𝑡𝑖

(𝑝)
− 𝑡𝑖

(0)) = 𝑥𝑝 

We solve this equation with respect to 𝑡𝑖
(𝑝)

: 

𝑡𝑖
(𝑝)
− 𝑡𝑖

(0) =
𝑥𝑝 − 𝑥0
𝑣𝑐

 ⇒  𝑡𝑖
(𝑝)

= 𝑡𝑖
(0) +

𝑥𝑝 − 𝑥0
𝑣𝑐

 

Note: In physical terms, this formula means that from the moment the sheet falls onto the conveyor until it 
reaches the pick-up point, it moves at the constant conveyor speed vc  over the distance between 𝑥𝑝 and 𝑥0. 

𝑡𝑖
(𝑝)

= 𝑡𝑖
(0)
+
𝑥𝑝 − 𝑥0

𝑣𝑐
 

 Time passes. 

Let's assume: the starting point is: x0=0.2 m;, pick-up point: xp=0.8 m;, conveyor speed: vc=1 m/s;, time of day: 

𝑡𝑖
(𝑝)

= 5 𝑠. 

Then: 

𝑡𝑖
(𝑝)

= 5 +
0,8 − 0,2

1,0
= 5 + 0,6 = 5,6 s 

A sample for these values is given in Table 1: 

 

Table 1. 

Paper position on the conveyor and pick-up time 

Parametr Marking Value Unity 

Conveyor speed vc 1,0 
m

s
 

Starting point x0 0,2 m 

Pick-up point xp 0,8 m 

Time for sheet to fall 𝑡𝑖
(0) 5,0 s 

Time for sheet to reach pick-up 𝑡𝑖
(𝑝)

 5,6 s 
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Path xp - x0 0,6 m 

 

Based on the above mathematical models, it is possible to draw a graph of the movement of the sheets against 
time. Figure 1. 

 

Figure 1. The x(t) trajectory of paper on the conveyor 

Description: abscissa - time t, ordinate - x(t) 
coordinate. Starting from point x=0.32 at t=5 s, it 
reaches x=0.8 at t=5.6 along a straight line. The pick-

up point 𝑡𝑖
(𝑝)

is shown on the graph by a vertical line. 

The flow of paper sheets falling onto the conveyor is 
random, and in most cases this flow is assumed to be 
a Poisson process. Therefore: the intensity of the flow 
of arrivals is taken as λ(sheets/s);, the average service 

speed of the robot manipulator is taken as 
μ(sheets/s). 

In this case, the system is represented by the M/M/1 
model (M - Poisson arrival, M - exponential service, 1 
- one robot). 

The probability distribution of the number of sheets 
in the next step in the steady-state: 

𝑃𝑛 = (1 − 𝜌)𝜌
𝑛 , 𝑛 = 0,1,2,… 

where ρ - is the loading coefficient. 

The nodal balance equations for the M/M/1 system are: 

𝜆𝑃𝑛 = 𝜇𝑃𝑛+1, 𝑛 ≥ 0. 

From this equation: 

𝑃𝑛+1 =
𝜆

𝜇
𝑃𝑛 = 𝜌𝑃𝑛 

By iteration: 

𝑃1 = 𝜌𝑃0, 𝑃2 = 𝜌
2𝑃0, … , 𝑃𝑛 = 𝜌

𝑛𝑃0 

The sum of the probabilities must be equal to 1.: 

∑ 

∞

𝑛=0

𝑃𝑛 = 1 ⇒  𝑃0∑  

∞

𝑛=0

𝜌𝑛 = 1 

Here:  

∑ 

∞

𝑛=0

𝜌𝑛 =
1

1 − 𝑝
 (∣ 𝜌 ∣< 1)  

the sum of a geometric progression. (geometric progression ∣ρ∣<1). So: 

𝑃0 ⋅
1

1 − 𝜌
= 1 ⇒  𝑃0 = 1 − 𝜌 
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From this: 

𝑃𝑛 = (1 − 𝜌)𝜌
𝑛 

The average number of elements in the queue “L” is found by mathematical expectation: 

𝐿 = ∑  

∞

𝑛=0

𝑛𝑃𝑛 = ∑  

∞

𝑛=0

𝑛(1 − 𝜌)𝜌𝑛 

We calculate this sum using the classical product of a geometric series. Initially: 

𝑆(𝜌) = ∑  

∞

𝑛=0

𝜌𝑛 =
1

1 − 𝜌
 

We can derive the derivative with respect to 𝜌: 

𝑑𝑆

𝑑𝜌
= ∑  

∞

𝑛=1

𝑛𝜌𝑛−1 =
1

(1 − 𝜌)2
 

Here:  

∑ 

∞

𝑛=1

𝑛𝜌𝑛−1 =
𝜌

(1 − 𝜌)2
 

Multiplying by ρ: 

So, 

𝐿 = (1 − 𝜌)∑  

∞

𝑛=1

𝑛𝜌𝑛 = (1 − 𝜌)
𝜌

(1 − 𝜌)2
=

𝜌

1 − 𝜌
 

The average residence time w of a sheet of paper in the system is found by Little's law.: 

𝐿 = 𝜆𝑊 ⇒  𝑊 =
𝐿

𝜆
=

1

𝜇 − 𝜆
 

Stability condition: ρ<1⇒λ<μ, otherwise the queue grows infinitely. 

Assume: Paper flow intensity: λ = 4
𝑣𝑎𝑟𝑎𝑞

s
. Simple control: Actual robot speed: 

The actual speed of the robot: μ1 =  4.2 {
varaq

s
} 

𝜌1 =
𝜆

𝜇1
=

4

4,2
≈ 0,95.

𝐿1 =
𝜌1

1 − 𝜌1
≈
0,95

0,05
≈ 20.

𝑊1 =
1

𝜇1 − 𝜆
=

1

4,2 − 4
= 5 s.

 

The effective speed of the robot is increased: μ2 = {
𝑣𝑎𝑟𝑎𝑞

𝑠
} 

 

𝜌2 =
4

5,5
≈ 0,73

𝐿2 =
𝜌2

1 − 𝜌2
≈ 2,67

𝑊2 =
1

5,5 − 4
≈ 0,67 s

 

Table 2 

Comparison of simple and proposed control according to the M/M/1 model 

Indicator Simple management  

μ1=4,2 

Offered  

μ2=5,35 
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Arrival intensity λ 4 sheet /s 4 sheet /s 

Service intensity μ 
4,2 sheet /s 

5, sheet

s
 

Load factor ρ 0,95 0,73 

Average queue length L ≈ 20 sheet ≈ 2,67 sheet 

Average time W 5 s 0,67 s 

 

Based on the above mathematical models, a histogram of the dependence of the load coefficient of the simple 
control and the proposed control algorithm is presented. Figure 2. 

 

Figure 2: Dependence of the load coefficient ρ on the control mode 

Description: bar chart. On the abscissa are two states: "Normal" and "Proposed"; on the ordinate is the value of 
1ρ. In the normal state, the column has a height of 0.95, and in the proposed state - 0.73. 

Let the robot manipulator have n joints. The joint angle vector: 

q(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡), … , 𝑞𝑛(𝑡)]
𝑇 

Three-point (end-effector) coordinates using inter-joint coupling based on Denavit-Hartenberg (D-H) parameters: 

p(𝑡) = 𝑓(q(𝑡)) = [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
] 

In the D-H scheme, the rotation and translation matrices for each joint are multiplied sequentially: 

 0𝑇𝑛(q) =  
0𝑇1(𝑞1) ⋅  

1𝑇2(𝑞2)⋯  
𝑛−1𝑇𝑛(𝑞𝑛) 

The coordinates of the three points are taken from the last column of this final matrix. Therefore, the kinematic 
equation is actually derived from a sequence of geometric transformations (rotations and translations). 

The requirement to hold the sheet: 

p (𝑡𝑖
(𝑝)
) = p𝑝 = [𝑥𝑝, 𝑦𝑝, 𝑧𝑝]

𝑇
 

So, the problem of inverse kinematics is to find q𝑖
(𝑝)

from given 𝑝𝑝: 

q𝑖
(𝑝)

= 𝑓−1(p𝑝) 
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Here, 𝑓−1 is found analytically or numerically (Newton-Raphson, Jacobian inverse) methods. 

Joint dynamics in general view: 

M(q)q̈ + C(q, q̇)q̇ + G(q) = 𝜏 

where, M(q)q̈- inertia matrix, C(q, q̇)- coercive and centrifugal forces, G(q)- gravity force vector, τ- joint moments. 

This equation follows from Lagrange's formalism: 

 

ℒ = 𝑇 − 𝑉, 

where T - is kinetic energy, V - is potential energy. For each 𝑞𝑗. 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇𝑗
) −

𝜕ℒ

𝜕𝑞𝑗
= 𝜏𝑗 

By writing T and V (depending on the velocity and height of the center of mass) for each joint, the terms M, C, and 
G are obtained from these equations. This process is based on standard steps in mechanical system theory. 

Let the initial value of the joint angle be 𝑞𝑗 𝑡𝑠, and the final value be 𝑞𝑗 𝑡𝑓 In the form of a 3rd degree polynomial: 

𝑞𝑗(𝑡) = 𝑎0 + 𝑎1(𝑡 − 𝑡𝑠) + 𝑎2(𝑡 − 𝑡𝑠)
2 + 𝑎3(𝑡 − 𝑡𝑠)

3. 

Terms: 

𝑞𝑗(𝑡𝑠) = 𝑞𝑗𝑠, 𝑞̇𝑗(𝑡𝑠) = 0, 𝑞𝑗(𝑡𝑓) = 𝑞𝑗𝑓 , 𝑞̇𝑗(𝑡𝑓) = 0. 

These 4 conditions give a system of linear equations in 4 unknowns a𝑎0, 𝑎1, 𝑎2, 𝑎3. Solving them, we find the 
coefficients of the polynomial. From the 3rd degree polynomial, we get the velocity, acceleration and jerk: 

𝑞̇𝑗(𝑡) = 𝑎1 + 2𝑎2(𝑡 − 𝑡𝑠) + 3𝑎3(𝑡 − 𝑡𝑠)
2

𝑞̈𝑗(𝑡) = 2𝑎2 + 6𝑎3(𝑡 − 𝑡𝑠)

𝑞𝑗(𝑡) = 6𝑎3

 

It is clear that the jerk is constant and easy to limit: 𝑞𝑗(𝑡) = |6𝑎3| ≤  𝐽𝑚𝑎𝑥 

Thus, by limiting the jerk, we reduce the shock in the robot joints, and the probability of "jerking" the paper is also 
reduced. 

An integrated indicator for assessing the smoothness of the trajectory: 

𝐽jerk =∑ 

𝑛

𝑗=1

∫  
𝑡𝑓

𝑡𝑠

(𝑞𝑗(𝑡))
2
𝑑𝑡 

For a 3rd degree polynomial 𝑞𝑗𝑡 =  6𝑎3since: 

𝐽jerk =∑ 

𝑛

𝑗=1

∫  
𝑡𝑓

𝑡𝑠

(6𝑎3)
2𝑑𝑡 =∑  

𝑛

𝑗=1

36𝑎3
2(𝑡𝑓 − 𝑡𝑠) 

Thus, the smoothness directly depends on the modulus of 𝑎3. 

Objective function for a robot conveyor system: 

𝐽 = 𝛼𝑇yakun + 𝛽∑  

𝑁

𝑖=1

𝐸𝑖 + 𝛾𝑃jam , 

restrictions: 

{
 
 

 
 𝑡𝑖+1

(𝑝)
− 𝑡𝑖

(𝑝)
≥ 𝑇min

‖q̇(𝑡)‖ ≤ 𝑞̇max
‖q̈(𝑡)‖ ≤ 𝑞̈max

0 < 𝜌min ≤
𝜆

𝜇(𝑡)
≤ 𝜌max < 1

 

Here: 𝑇y𝑎𝑘𝑢𝑛- time to process a certain number of sheets; 𝐸𝑖  - i - energy consumption for the i-sheet; 𝑃j𝑎𝑚 - 

penalty function associated with the probability of jamming 𝐿 > 𝐿𝑚𝑎𝑥probability; α,β,γ - weight coefficients; μ(t) 
- "equivalent" service intensity of the robot in real time. 
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The goal is to find the control parameters (trajectory time interval, 𝑎𝑘coefficients, choice of μ(t)) that minimize J. 
In this case, from a mathematical point of view, this is reduced to a constrained nonlinear optimization problem. 

RESULTS 

For the parameters in Section 2.2 (Table 2), we use 
the model results. We also present them graphically. 
Graph 3: Dependence of the average queue length L 
on the control 

Description: column chart. The height of the "Normal 
control" column is ≈20, the height of the "Proposed" 
column is ≈2.7. As can be seen from the calculations, 
the queue length is reduced by a factor of 7-8. 

The joint trajectory q1(t) for a 3-joint robot was 

compared in two cases: 

Simple linear interpolation (there is a jump in velocity 
and acceleration); 3rd degree jerk-limited polynomial 
trajectory. 

As a result of the calculations, the following values 
were obtained for one packaging cycle in 10 s 

(conditional): Simple trajectory: 𝐽𝑗𝑒𝑟𝑘
1 =  480 

(relative unit); Jerk-limited trajectory: 𝐽𝑗𝑒𝑟𝑘
2 =  340 

(relative unit). 

Table 3. 

Trajectory smoothness indicators 

Trajectory type 
𝐉𝒋𝒆𝒓𝒌 

(relative) 
Relative change 

Simple linear 480 - 

Jerk-limited polynomial 340 -29 % 

The graph of the joint angles of the robot manipulator versus time for a simple linear trajectory and a jerk-limited 
cubic trajectory can be seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: 𝒒1  joint angle trajectory 𝒒1  

Description: abscissa - time t, ordinate - 𝑞1 . The 
normal trajectory has a sharp angle (similar to a sine), 
while the jerk-controlled trajectory has a smooth S-
shaped line. The velocity and acceleration graphs also 
show that there are no jumps in the jerk-controlled 
variant. 

During one hour of modeling (3600 s), the following 

results were observed (conditional model): In normal 
control, the number of times the queue L > Lmax =
15was jammed ≈20 times; In the proposed algorithm 
- ≈12 times. 

The fraction of broken (folded or misplaced 
sheets): Normal control: 3.5%; Proposed algorithm: 
2.0%. 

Table 4. 

Comparison of system quality indicators 

Indicator Simple management Proposed algorithm 

Number of jams (per hour) 20 12 
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Defective rate 3,5% 2,0 % 

Paper flow efficiency (relative) 1,00 1,15(+15%) 

DISCUSSION 

The results show that with simple cyclic control of the 
conveyor-robot system in the M/M/1 model, the 
value of ρ approaches 1 very closely, ρ≈0.95, resulting 
in a queue length of L≈20. This leads to paper 
accumulation along the conveyor, jams, and a 
decrease in the stability of functional performance. 

The proposed algorithm continuously evaluates the 
paper flow intensity λ and the real speed of the robot 
μ(t). As a result of optimization, ρ≈0.73 is maintained 
due to the increase in μ. As we see from the M/M/1 
formula: 

𝐿 =
𝜌

1 − 𝜌
 

Since even a small decrease in ρ will drastically reduce 
L. For example: 

𝐿1 =
0,95

0,05
= 19,0 ≈ 20, 𝐿2 =

0,73

0,27
≈ 2,7 

That is, a decrease in the load factor by about 23% 
reduces the queue length by 7-8 times. Since the jerk-
limited trajectory is mathematically constructed using 
a 3rd degree polynomial, the speed and acceleration 
are limited, and the jerk is constant and small. The 
dynamic equation derived from the Lagrange 
equations: 

M(q)q̈ + C(q, q̇)q̇ + G(q) = 𝜏 

When a smooth 𝑞𝑗is introduced into the joint 

moments also change without sharp jumps. This 
reduces the impact when the paper is gripped by the 
vacuum gripper, i.e. the paper folds or flies off less 
often. As a result, the modeling showed that the 
failure rate decreased from 3.5% to 2.0%. This 
difference can have a significant economic effect for 
practical printing lines. 

CONCLUSION 

In this paper, robotic manipulator control algorithms 
for optimizing paper flow in printing processes were 
developed and substantiated with mathematical 
models. Main results: 

1. Starting from the ordinary differential equation 
for the movement of paper along the conveyor, 

the formulas 𝑥𝑖(𝑡) = 𝑥0 + 𝑣𝑐(𝑡 – 𝑡𝑖
0) and the 

pick-up time 𝑡𝑖
𝑝
= 𝑡𝑖

{0} +
𝑥𝑝– 𝑥0

𝑣𝑐
  were derived by 

exact integration. 

2. The paper flow is represented by the M/M/1 
queuing theory model, 𝑃𝑛 = (1 –  𝑝)\𝑝

𝑛, 𝐿 =

 
𝑝

𝑝−1
,  𝑊 =  

1

𝜇−𝜆
 

3.  It was shown step by step that the formulas are 
derived from the geometric series and Little's law. 
It was shown that the kinematic equations of the 
robot manipulator are derived from the Denavit-
Hartenberg transformations, and the dynamic 
equations are derived from the Lagrange 
equations. 

4. For the jerk-limited 3rd-degree polynomial 
trajectory model, the 𝐽{𝑗𝑒𝑟𝑘} index was derived 

analytically and used as a criterion for evaluating 
trajectory smoothness. 

5. According to the results of MATLAB/Simulink 
modeling: the load factor ρ was reduced from 
0.95 to 0.73; the average queue length L was 
reduced from 20 sheets to 2.7 sheets; the defect 
rate decreased from 3.5% to 2.0%; the paper flow 
efficiency increased by approximately 15%. 

The proposed mathematical approach and control 
algorithms can serve as a methodological basis for 
designing robotic manipulator systems for sorting and 
packaging paper in printing plants. In the future, it is 
planned to further improve the model by adding a 
real-time vision system, fuzzy-logic control, and 
online optimization blocks. 
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