%// ;ff”““v'/ ! Vol.05 Issue 11 2025
; - 244-247
O0SCAR PUBLISHING
ervices

American Journal of Applied Science
and Technology

A Comprehensive Analysis of SQL Code Quality,
Performance Optimization, and Multi-Model Database

Integration
John E. Maxwell

Department of Computer Science, University of Edinburgh, United Kingdom
Received: 01 November 2025; Accepted: 15 November 2025; Published: 30 November 2025

Abstract: The evolving landscape of database systems has prompted a comprehensive examination of SQL code
quality, relational and non-relational paradigms, and emerging hybrid frameworks. This study synthesizes insights
from foundational relational database theory, object-relational metrics, code quality assessments, and
contemporary advances in multi-model database integration. Emphasis is placed on identifying structural
inefficiencies, commonly referred to as “code smells,” their impact on database performance, and the practical
approaches to remediation in both transactional and analytical contexts. The paper further investigates
normalization strategies in nested relational databases, materialized view selection for query optimization, and the
emergent convergence of graph and relational query frameworks. By leveraging theoretical models alongside
empirical studies of high-performance computing failures and PostgreSQL latency optimization, this research
provides a holistic understanding of both classical and modern database systems. Implications for database schema
design, query performance, and cross-platform interoperability are explored, highlighting future directions for
database engineering, especially in scenarios where NoSQL and NewSQL architectures intersect with traditional
relational models.

Keywords: SQL optimization, code smells, relational databases, multi-model systems, query performance, schema
design, database integration

INTRODUCTION

The structured query language (SQL) remains a
cornerstone of relational database management
systems (RDBMS), forming the basis for data storage, management, and schema uniformity (Pavio & Aslett,
retrieval, and manipulation across a spectrum of 2016; Stonebraker & Cetintemel, 2005). Modern
applications (Date, 2011). Despite decades of database applications often demand hybrid
development, challenges in code quality, query capabilities, necessitating seamless interoperability
efficiency, and schema design persist, reflecting the between relational and graph-based query
complexity of translating conceptual models into mechanisms, as standardized in SQL/PGQ and similar

performant operational systems (Lindland et al., frameworks (ISO, 2023; Costa et al., 2024).

enhanced scalability while introducing unique
challenges for query consistency, latency

1994). The concept of “code smells,” initially The theoretical underpinnings of relational
popularized in object-oriented programming, has normalization, nested relational models, and object-
found increasing relevance in SQL and procedural relational mappings remain critical for understanding
extensions such as PL/SQL, where suboptimal how design choices impact both system reliability and
structures can introduce both maintainability issues guery execution efficiency (Ozsoyoglu & Yuan, 1989;
and performance degradation (Factor, 2019; Piattini et al., 2001; Tankoano, 2025). Furthermore,
Sonarsource, 2019). empirical studies on high-performance computing

Beyond the classical relational paradigm, the failures and PostgreSQl-specific optimizations

database ecosystem has diversified, encompassing underscore the importance of integrating code

columnar stores, NewSQL, and NoSQL architectures, quality assessments with system-level performance
each promising performance improvements or metrics (Schroeder & Gibson, 2010; Natti, 2023).

American Journal of Applied Science and Technology 244 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Despite extensive literature on individual aspects of
SQL code quality, performance optimization, and
multi-model integration, there remains a gap in
holistic studies that combine theoretical, practical,
and empirical perspectives to guide comprehensive
database engineering. This research aims to address
this gap by analyzing SQL code smells, relational and
nested schema metrics, query optimization
strategies, and the emerging convergence of
relational and graph database paradigms.

METHODOLOGY

The methodology adopted in this study follows an
integrative, action-research-oriented approach that
combines literature synthesis, conceptual modeling,
and empirical evaluation. Firstly, an exhaustive
review of existing SQL quality guidelines, including
Redgate’s SQL code smells catalog and Sonarsource
PL/SQL rules, was conducted to establish a taxonomy
of structural and logical inefficiencies in database
scripts (Factor, 2019; Sonarsource, 2019). Each
identified code smell was categorized according to its
impact on maintainability, execution performance,
and scalability.

Next, conceptual modeling techniques were applied
to assess quality attributes within database schemas,
drawing on Lindland et al’s frameworks for
understanding conceptual modeling and Piattini et
al.’s object-relational metrics (Lindland et al., 1994;
Piattini et al., 2001). This analysis involved detailed
evaluations of relational, nested relational, and
object-relational schemas to quantify redundancy,
complexity, and potential for update anomalies.

Query performance optimization was examined
through descriptive analyses of materialized view

selection strategies, index structures, and
fillfactor/HOT parameter tuning in PostgreSQL
(Mohod & Chaudhari, 2013; Natti, 2023).

Additionally, failures in high-performance computing
systems were reviewed to understand the
operational constraints affecting large-scale database
deployments, including concurrency bottlenecks and
I/0 latency (Schroeder & Gibson, 2010).

To investigate multi-model integration, this study
evaluated frameworks that enable uniform access to
heterogeneous database systems, including SOS and
other multi-store architectures, as well as SQL/PGQ,
standards facilitating graph-relational query
convergence (Atzeni et al., 2012; Vathy-Fogarassy &
Hugyak, 2017; Costa et al., 2024). Schema-mapping
optimization and graph-relational transformations
were assessed to identify potential performance
trade-offs and theoretical limitations (Fagin et al.,
2008).

American Journal of Applied Science and Technology

245

Finally, action design research principles guided the
iterative synthesis of theoretical insights and practical
recommendations, aligning database engineering
practices with measurable performance and
maintainability outcomes (Sein et al., 2011). The
methodology emphasizes descriptive, text-based
elucidation of relational constructs, query plans, and
schema interactions, avoiding reliance on
guantitative tables or formulaic representations.

RESULTS

The study’s findings underscore the pervasive impact
of SQL code smells on system performance and
maintainability. Common structural issues, such as
deeply nested queries, excessive use of cursors, and
violation of normalization principles, were
consistently linked to increased execution times,
higher ~memory consumption, and greater
susceptibility to update anomalies (Factor, 2019;
Eessaar & Kadosaar, 2018). For instance, repeated
violation of first and second normal forms in nested
relational schemas exacerbated data redundancy,
complicating transactional integrity and triggering
cascading update failures (Ozsoyoglu & Yuan, 1989).

Empirical insights from PostgreSQL latency
optimizations demonstrated that careful adjustment
of fillfactor and HOT percentages could reduce write
amplification in high-update environments, yielding
measurable improvements in throughput and latency
for both transactional and analytical workloads (Natti,
2023). This reinforces the necessity of combining
schema design best practices with system-level
tuning to achieve optimal performance outcomes.

Investigation into materialized views and index
structures revealed nuanced trade-offs between
qguery speed and storage overhead. Join indices and
selected materialized views significantly improved
complex query execution times, particularly in
analytical environments with high-dimensional
datasets, but required proactive maintenance
strategies to avoid staleness and inconsistency
(Valduriez, 1987; Mohod & Chaudhari, 2013).
Column-store architectures were shown to
outperform row-stores in read-heavy analytical
queries, though performance gains were highly
context-dependent and influenced by data clustering
and compression strategies (Abadi et al., 2008).

Multi-model database frameworks, including
SQL/PGQ and hybrid relational-graph systems,
demonstrated substantial promise for unifying access
across heterogeneous data stores. While traditional
relational systems offer robust transaction semantics,
graph-relational integration allows for expressive
relationship queries and complex pattern matching

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

without sacrificing the declarative clarity of SQL (ISO,
2023; Costa et al., 2024). Nevertheless, performance
overheads and mapping complexity remain critical
challenges, particularly in scenarios requiring real-
time query responsiveness.

Historical analysis of high-performance computing
failures illuminated the systemic risks inherent in

large-scale database deployments. Concurrency
conflicts, /O contention, and insufficiently
normalized schemas were recurrent factors

contributing to failure events, emphasizing the
importance of combining design-time rigor with
operational monitoring and proactive remediation
strategies (Schroeder & Gibson, 2010).

DISCUSSION

The findings reveal several interrelated dimensions of
database engineering that require careful balancing
to achieve both performance efficiency and
maintainability. SQL code smells function as both
indicators and drivers of inefficiency, highlighting
areas where schema design, query formulation, and
procedural extensions intersect. Addressing these
smells necessitates not only adherence to
normalization principles but also a nuanced
understanding of workload characteristics, indexing
strategies, and multi-store integration (Factor, 2019;
Eessaar & Kdosaar, 2018).

The convergence of relational and graph database
paradigms introduces both opportunities and
complexities. On one hand, SQL/PGQ and similar
hybrid frameworks enable expressive querying of
relational data enriched with graph semantics,
facilitating complex analytics and pattern recognition
tasks (Costa et al., 2024; 1SO, 2023). On the other
hand, mapping relational schemas to graph
representations can introduce latency penalties,
schema redundancy, and maintenance burdens,
especially in dynamic transactional environments.
This underscores the ongoing need for theoretical
models that reconcile schema optimization, query
planning, and multi-model execution strategies (Fagin
et al., 2008).

Performance optimization strategies such as fillfactor
tuning, HOT updates, materialized view selection, and
column-store deployment illustrate the
interdependence of logical schema design and
physical storage management. The selection of an
optimal strategy depends on workload analysis,
frequency of updates versus reads, and concurrency
requirements, highlighting the importance of
empirically guided design decisions (Natti, 2023;
Abadi et al., 2008). Furthermore, uniform access
platforms like SOS enable abstraction across

American Journal of Applied Science and Technology

246

heterogeneous stores, but introduce new layers of
complexity, including translation overheads, latency
variance, and consistency challenges (Atzeni et al.,
2012; Vathy-Fogarassy & Hugyak, 2017).

Limitations of this study include the reliance on
descriptive analysis over quantitative benchmarking
due to the scope of referenced studies. Future work
should incorporate longitudinal, empirical validation
of code smell remediation strategies, performance
tuning across hybrid environments, and automated
schema optimization techniques. There is also a
critical need to develop predictive models linking
conceptual schema quality metrics with operational
performance outcomes in large-scale, distributed
database systems.

CONCLUSION

This research presents a comprehensive synthesis of
SQL code quality, performance optimization, and
multi-model database integration, revealing the
interdependencies between schema design, query
efficiency, and system-level performance. SQL code
smells are shown to be a significant determinant of
both maintainability and execution speed, requiring
targeted remediation strategies grounded in
relational theory and empirical tuning practices.
Hybrid database frameworks, including relational-
graph integration and multi-store access platforms,
present new avenues for expressive querying and
analytical capabilities, but necessitate careful schema
mapping and performance management. By
integrating theoretical models, practical optimization
strategies, and empirical insights, this study
contributes to a holistic understanding of
contemporary database engineering challenges and

informs future research directions in high-
performance, multi-paradigm data management
systems.

REFERENCES

1. Abadi, D. J.,, Madden, S. R., & Hachem, N. (2008).
Column-Stores vs. Row-Stores: How Different Are
They Really? SIGMOD’08, Vancouver, BC, Canada.

2. Atzeni, P., Bugiotti, F., & Rossi, L. (2012). Uniform
Access to Non-relational Database Systems: The
SOS Platform. In J. Ralyté et al. (Eds.), CAIiSE 2012,
LNCS 7328, 160-174.

3. Bézivin, J., & Gerbé, 0. (2001). Towards a precise
definition of the OMG/MDA framework. Proc.
16th Annual Int. Conf. on Automated Software
Engineering (ASE 2001).

4. Bondiombouy, C., & Valduriez, P. (2016). Query
Processing in Multistore Systems: an overview.
RR-8890, INRIA Sophia Antipolis - Méditerranée,

https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

38.

Comer, D. (1979). The Ubiquitous
Computing Surveys, 11(2).

Costa, C. H,, Filho, J. V. B. M., Lou, VY., Lai, L., Lyu,
B., Yang, Y., Zhou, X., Yu, W., Zhang, Y., & Zhou, J.
(2024). Towards a Converged Relational-Graph
Optimization Framework. Proc. ACM Manag.
Data, 2(6), SIGMOD.

Date, C.J.(2011). SQL and Relational Theory: How
to Write Accurate SQL Code. 2nd ed. O’Reilly.

Eessaar, E., & Kdosaar, E. (2018). On finding
model smells based on code smells. In R. Silhavy
(Ed.), Computer Science On-line Conference 2018
(CS0C2018), 269-281. Springer, Cham.

Fagin, R., Kolaitis, P. G., & Nash, A. (2008).
Towards a Theory of Schema-Mapping
Optimization. PODS’08, Vancouver, BC, Canada.

Factor, P. (2019). SQL Code Smells. Redgate.
http://assets.red-
gate.com/community/books/sqlcode-smells.pdf

ISO/IEC. (2023). Information technology
Database languages SQL Part 16: Property Graph
Queries (SQL/PGQ). Edition 1.

Lindland, O. I, Sindre, G., & Solvberg, A. (1994).
Understanding quality in conceptual modeling.
IEEE Software, 11, 42—49.

Mohod, A. P., & Chaudhari, M. S. (2013). Improve
Query Performance Using Effective Materialized
View Selection and Maintenance: A Survey.
1JCSMC, 2(4), 485-490.

Natti, M. (2023). Reducing PostgreSQL read and
write latencies through optimized fillfactor and
HOT percentages for high-update applications.
International Journal of Science and Research
Archive, 9(2), 1059-1062.

Ozsoyoglu, Z. M., & Yuan, L. Y. (1989). On the
normalization in Nested Relational Databases.
LNCS, 361.

Pavlo, A., & Aslett, M. (2016). What's Really New
with NewSQL? ACM SIGMOD Record.

Piattini, M., Calero, C., Sahraoui, H. A., & Lounis,
H. (2001). Object-relational database metrics.
L'Objet, 7(4), 477-496.

Schroeder, B., & Gibson, G. (2010). A Large-Scale
Study of Failures in High-Performance Computing
Systems. IEEE Transactions on Dependable and
Secure Computing.

Sein, M. K., Henfridsson, O., Purao, S., Rossi, M.,
& Lindgren, R. (2011). Action design research. MIS
Quart., 35, 37-56.

B-Tree.

American Journal of Applied Science and Technology

247

20.

21.

22.

23.

24,

25.

26.

Sonarsource. (2019). PL/SQL
https://rules.sonarsource.com/plsqgl

Stonebraker, M., & Cetintemel, U. (2005). "One
Size Fits All": An Idea Whose Time Has Come and
Gone. Proc. 21st Int. Conf. on Data Engineering.

Tankoano, J. (2025). Modele relationnel
imbriqué. In SGBD relationnels — Tome 2, Vers les
Bases de données Réparties, Objet, Objet-
relationnelles, XML.
https://www.researchgate.net/publication/3665
48683 _SGBD_relationnels_-

_Tome_2 Vers_les Bases_de_donnees_Reparti
es_Objet_Objet-relationnelles_ XML

Valduriez, P. (1987). Join Indices. ACM TODS,
12(2), 218-246.

Vathy-Fogarassy, A., & Hugyak, T. (2017). Uniform
data access platform for SQL and NoSQL database
systems. Information Systems, 69, 93—-105.
ORACLE. (2024). Oracle Database SQL Language.
Reference 23ai, F47038-19.

sp_Blitz®. (2019). SQL Server Takeover Script.
https://www.brentozar.com/blitz/

rules.

https://theusajournals.com/index.php/ajast

