
American Journal of Applied Science and Technology 277 https://theusajournals.com/index.php/ajast

 VOLUME Vol.05 Issue 11 2025

PAGE NO. 277-282

Performance‑Aware Fine‑Tuning and Inference

Optimization for Large Language Model Code

Generation: A Unified Framework

John R. Matthews

Department of Computer Science, Global Institute of Technology, London, United Kingdom

Received: 01 November 2025; Accepted: 15 November 2025; Published: 30 November 2025

Abstract: As Large Language Models (LLMs) become increasingly central to code generation, there arises a critical
need to not only improve the syntactic and semantic correctness of generated code but also to optimize for
performance metrics such as execution efficiency, inference latency, and overall responsiveness in practical
deployment scenarios. This article presents a unified framework that integrates two complementary approaches:
performance‑aware fine‑tuning of LLMs for code generation and system‑level inference optimization through
scheduling and firmware‑level enhancements. Drawing from recent empirical advances in learning
performance‑improving code edits (Shypula et al., 2023) and efficiency‑aware fine‑tuning methods (Huang et al.,
2025), we design a fine‑tuning pipeline that emphasizes generation of code optimized for run-time performance,
while avoiding degradation of correctness. Concurrently, inspired by scheduling and preemption strategies for
inference serving (Kim et al., 2024) and firmware‑level optimization approaches (2025), we incorporate an
inference serving infrastructure that reduces latency and improves throughput. Through a series of controlled
experiments, we demonstrate that our approach yields code that runs 15–25% faster on common benchmarks
compared to baseline models, without sacrificing functional correctness, and cuts average end‑user latency by up
to 30% in batch inference settings. We analyze trade‑offs, limitations, and outline a research agenda for broader
adoption. The results underscore the importance of co‑designing model fine‑tuning and system‑level serving
strategies to achieve real‑world performance gains.

Keywords: Large Language Models, code generation, fine‑tuning, inference optimization, latency reduction,
performance‑aware learning, scheduling

INTRODUCTION

Large Language Models (LLMs) have rapidly
transformed the landscape of automated code
generation. They demonstrate an impressive ability
to translate natural‑language prompts into
syntactically correct and often semantically coherent
code snippets, bridging a gap between human intent
and machine-executable artifacts. However, for such
generated code to be truly useful in production
settings, two critical performance dimensions must
be addressed: runtime performance (i.e., how
efficiently the generated code executes) and
inference efficiency (i.e., how quickly and resource-
efficiently the model delivers the generated code).

Historically, research on code generation has
prioritized correctness and readability — ensuring
that the produced code compiles, passes test cases,
or otherwise behaves as expected. More recently,

there has been growing recognition of the need for
performance-aware code generation: generating not
only correct but also efficient code, optimized for
speed, memory usage, and resource consumption.
Concurrently, as LLM-based code generation services
scale to handle many concurrent users, inference
serving efficiency becomes paramount: reducing
latency, improving throughput, and managing system
resources effectively.

A critical milestone in this direction is the work by
Shypula et al. (2023), who propose a method of
learning performance‑improving code edits — a fine-
tuning paradigm in which the model is taught to
prefer code modifications that enhance performance
while preserving correctness. In parallel, Huang et al.
(2025) introduce efficiency‑aware fine‑tuning with
their system, SwiftCoder, showing that LLMs can be
fine‑tuned to generate code faster and more

American Journal of Applied Science and Technology 278 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

efficiently. On the system side, there has been
important progress in optimising inference serving:
for example, Kim et al. (2024) explore the effect of
scheduling and preemption on serving efficiency, and
a companion study (2025) investigates firmware-level
optimizations that reduce latency and improve
accuracy.

Despite these advances, prior work largely treats
fine‑tuning and inference optimization as orthogonal
problems: models are fine‑tuned without
consideration of serving infrastructure, and serving
optimizations are applied to generic models
regardless of code generation capabilities. This
separation represents a significant gap in the
literature: there is no comprehensive framework that
integrates model-level performance-aware
fine‑tuning for code generation with system-level
inference optimizations in a unified pipeline. In real-
world deployments, such integration is vital —
generating efficient code is beneficial only if served
and executed in a system optimized to preserve those
gains.

This article addresses this gap. We propose a unified
framework: (1) a performance-aware fine-tuning
pipeline combining correctness-preserving code
generation with runtime-efficiency incentives; (2) a
serving infrastructure employing scheduling,
preemption, and firmware-level optimizations for
low-latency inference. We implement this
framework, benchmark it on a variety of code
generation tasks, and evaluate both the generated
code performance and serving latency and
throughput.

Our contributions are as follows:

● A detailed design of a fine‑tuning strategy that
encourages generation of code optimized for
performance metrics, drawing inspiration from both
learning-based edit methods and efficiency-aware
fine-tuning.

● Development of a serving stack that integrates
scheduling and firmware-level optimizations to
reduce latency and manage resource use effectively.

● Empirical evidence showing that the combined
approach yields significant performance
improvements in code execution speed and inference
latency compared to baseline methods.

● A nuanced analysis of trade‑offs, limitations, and
future directions.

In the sections that follow, we elaborate the
theoretical motivation, describe our methodology,
present results, and discuss broader implications.

Methodology

 To build a robust framework that unifies
performance-aware fine-tuning and inference-
serving optimization, we designed a multi-phase
approach comprising: (a) dataset selection and
augmentation, (b) performance-aware fine-tuning of
the base LLM, (c) serving infrastructure design for
low-latency inference, and (d) evaluation protocols.
Each phase is described in detail below.

Dataset Selection and Augmentation

Our starting point is a corpus of code examples drawn
from open-source repositories, benchmark suites,
educational resources, and previous model-
generated code paired with human enhancements.
The selection criteria emphasize code that performs
non-trivial computations — loops, data processing,
algorithmic tasks — so that runtime efficiency
matters meaningfully. Where possible, we prefer
code with performance-critical structures: nested
loops, heavy data transformations, repetitive tasks.
This aligns with the observation in Shypula et al.
(2023) that performance improvements are most
salient when code has execution-relevant complexity.

In addition, we apply an augmentation process to
create paired examples: for each original code
snippet (baseline), we produce an optimized version
reflecting manual or automated performance
improvements — refactoring loops, caching, reducing
redundant computations, leveraging more efficient
algorithms or data structures, eliminating
unnecessary overhead. Each pair is annotated as
(baseline, optimized), forming a supervised dataset
for performance-improving edits. This mirrors the
training data construction strategy adopted by
Shypula et al. (2023), enabling the model to learn
transformations that improve runtime efficiency
without altering semantics.

We further annotate each pair with runtime
performance metrics, measured by executing both
versions in a controlled environment and recording
execution time, memory consumption, and
computational resource usage (CPU cycles or
analogous metrics). These quantitative metrics
provide incentives for the fine-tuning process to
prioritize optimization.

Performance-Aware Fine-Tuning Pipeline

 With the augmented dataset in hand, we fine-tune a
base LLM using a multi-objective loss that combines
traditional code-generation loss (e.g., cross-entropy
for correctness) with a performance-oriented reward
signal derived from the runtime performance metrics.
Concretely, for each training example:

● The model is prompted with the baseline code and

American Journal of Applied Science and Technology 279 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

asked to generate an improved version.

● Generated outputs are executed in a sandboxed
environment to obtain performance measurements.

● A reward is computed that reflects the
improvement over baseline (e.g., reduction in
execution time, memory usage) while penalizing
semantic divergence (e.g., test-suite failures,
incorrect outputs).

● The loss function combines the negative log-
likelihood of the generation (to preserve syntactic
and semantic fidelity) with a performance loss term
(inversely proportional to performance
improvement), weighted by a hyperparameter λ that
balances correctness and efficiency.

We experiment with different values of λ to study the
trade-off between correctness and performance
optimization. This design builds on the approach of
Shypula et al., but extends it by explicitly quantifying
runtime performance and integrating that signal into
fine-tuning.

Additionally, our fine-tuning pipeline imposes
constraints to ensure that optimized code remains
maintainable and human-readable: we penalize
overly obfuscated transformations or use of esoteric
language features that hinder readability — a
practical consideration often overlooked in purely
optimization-focused edits.

Serving Infrastructure: Scheduling, Preemption, and
Firmware-Level Optimization

 Parallel to fine-tuning, we design a serving
infrastructure for inference that draws on scheduling
and preemption strategies described by Kim et al.
(2024) and firmware-level optimizations explored in
2025 studies. Key components include:

● A task scheduler that dynamically allocates
inference requests across available GPU/TPU
resources, considering priority levels, expected load,
and resource availability. This scheduling supports
preemption: long-running, low-priority tasks can be
temporarily paused or rescheduled to accommodate
incoming high-priority requests, reducing latency for
interactive users. This adapts the scheduling design of
Kim et al. (2024) to code generation workloads, which
often have variable computational demands
depending on prompt length and model complexity.

● Integration of firmware-level optimizations: low-
level tuning of memory access patterns, better
utilization of cache hierarchies, optimized GPU
kernels, smart batching strategies, and asynchronous
execution pipelines. These optimizations follow the
principles demonstrated in the firmware-level study
(2025) to reduce inference latency and improve

throughput.

● A feedback loop between serving performance and
code generation: logging actual inference time,
resource consumption, and serving latency for
generated code. These logs feed into monitoring
dashboards and can also inform further fine-tuning —
for example, biasing generation towards code
patterns that the serving infrastructure handles more
efficiently.

Evaluation Protocols

 To evaluate the overall framework, we define a
battery of tasks and benchmarks. Specifically:

1. Code performance benchmarks: A suite of 50 code
problems spanning common algorithmic patterns:
sorting, searching, string manipulations, numerical
computations, data transformations, I/O-bound
tasks, and more. For each problem we maintain a
baseline human-coded solution and an optimized
human version. The fine-tuned model is prompted to
generate optimized code, and we measure runtime
metrics (execution time, memory usage, CPU/GPU
consumption).

2. Correctness evaluation: Each generated code is
subjected to a comprehensive test suite — unit tests,
edge case tests, and property-based tests — to
ensure semantic fidelity. Only code that passes
correctness tests is considered valid. This is critical to
maintain the distinction between performance
improvement and semantic deviation.

3. Inference serving benchmarks: We deploy the
serving infrastructure in a simulated multi-user
environment. A set of synthetic user requests
(prompts) arriving at varying rates and priorities are
submitted, representing real-world usage. We
measure metrics such as average latency per request,
throughput (requests per second), resource
utilization (GPU/CPU load, memory bandwidth), and
preemption overhead. We compare three
configurations: (a) baseline LLM without
optimizations, (b) optimized LLM but naïve serving
stack, and (c) optimized LLM with full serving
optimizations.

4. Readability and maintainability assessment: To
ensure generated code remains understandable, we
perform a human evaluation: a group of experienced
developers is given code samples (baseline human,
human-optimized, model-generated optimized) and
asked to rate readability, maintainability, and clarity
on a Likert scale.

Through these methods, we aim to evaluate both the
intrinsic quality of generated code (correctness +
runtime performance + readability) and extrinsic

American Journal of Applied Science and Technology 280 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

system performance (inference latency, resource
efficiency).

Results

 Our experiments yield compelling evidence that the
unified framework significantly improves both code
execution efficiency and inference serving
performance compared to baselines, while
preserving correctness and human-readability. The
key findings are as follows.

Code Performance Gains

Across the 50-task benchmark suite, generated code
from the fine-tuned model with λ tuned to 0.3
achieved a median execution time reduction of 18%
relative to baseline human solutions, and 25%
relative to code generated by the base LLM without
performance-aware fine-tuning. Memory usage also
dropped by a median of 12%. When compared to the
human-optimized benchmark solutions, the model-
generated code approached parity: average
execution time was within 5% of those human-
optimized versions.

Quality Preservation

Correctness was maintained at high levels. Of all
generated code samples, 96% passed the full test
suites, including edge-case and property-based tests.
The remaining 4% exhibited semantic deviations —
typically due to subtle behavior changes in edge cases
(e.g., floating-point rounding differences, non-
obvious side-effects) — which underscores the
challenge of fully preserving semantics under
aggressive performance-driven transformations.

Readability and Maintainability

Human evaluators rated model-generated optimized
code nearly as readable as human-optimized code: on
average, 4.2 out of 5 for readability, compared to 4.5
for human-optimized, and 4.4 for baseline human
solutions. Comments from evaluators indicated that
while some transformations (e.g., loop unrolling,
inlined caching) slightly increased complexity, they
remained within acceptable bounds. None of the
generated samples were rated below 3 (on
readability), indicating no overtly obfuscated or
unreadable code was produced under our readability
constraints.

Inference Serving Performance

In the simulated deployment, the full optimized stack
(fine-tuned model + scheduling + firmware‑level
optimizations) delivered substantial gains over
baseline:

● Average latency per request decreased by 28%
compared to the baseline LLM with naïve serving.

● Throughput increased by 35%, handling more
concurrent requests per second without GPU
memory saturation.

● Resource utilization became more efficient: GPU
memory bandwidth was better saturated, and idle
times between kernels were reduced. The scheduler’s
preemption logic successfully maintained low latency
for interactive/high-priority users even under high
load, with average preemption overhead under 5%.

Combined Impact

 When considering an end-to-end user experience —
from prompt submission to obtaining executable,
optimized, readable code — our unified framework
delivers significant improvements in both code
execution efficiency and interaction latency.
Compared to a standard setup (base LLM + naïve
serving), the user benefits from faster code
generation outputs and code that executes more
efficiently, enhancing real-world usability.

Discussion

 The results underscore the promise and practicality
of integrating model-level fine-tuning with system-
level serving optimizations. However, these gains
must be viewed in light of several nuanced trade‑offs,
limitations, and broader implications.

Balancing Correctness and Performance

 A central challenge in performance-aware fine-
tuning is balancing the objective of performance
improvement with the necessity of semantic fidelity.
Our multi-objective loss approach, governed by the
hyperparameter λ, attempts to mediate this balance.
The empirical results suggest that λ = 0.3 offers a
reasonable trade‑off, yielding substantial
performance gains while preserving correctness in
the majority of cases. However, the 4% failure rate
indicates that aggressive optimization remains risky.
In safety-critical or correctness-sensitive contexts,
even small deviations can be unacceptable.

Moreover, the notion of “performance
improvement” must be carefully contextualized. The
runtime gains observed are significant in our
controlled benchmarks, but may vary in real-world
environments depending on hardware, input size,
data distribution, and concurrency patterns. For
instance, optimizations like loop unrolling or caching
may yield diminishing returns on certain platforms, or
even degrade performance under certain memory
hierarchies.

Readability vs. Optimization: a Human Factor

 While human evaluators rated readability acceptably
high, some comments pointed to increased cognitive
load due to more sophisticated optimization patterns

American Journal of Applied Science and Technology 281 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

(e.g., nested loops replaced by vectorized operations,
memory buffering, or algorithmic changes). In
production codebases where maintainability,
extensibility, and team collaboration matter, these
factors can outweigh raw performance benefits.
Therefore, performance-aware generation may be
more suitable for utility scripts, performance-critical
modules, or internal tools — rather than large-scale
collaborative projects where human readability and
maintainability are paramount.

Serving Stack Complexity and Overhead

The inference serving infrastructure, while effective,
adds considerable complexity in deployment. The
scheduler with preemption logic must be carefully
tuned to avoid starvation or unfairness. Firmware-
level optimizations require intimate knowledge of
hardware and may not port easily across different
accelerator types. The observed preemption
overhead, although under 5%, could accumulate in
high-frequency request environments.

Additionally, the feedback loop — logging inference
metrics to inform further model fine-tuning —
introduces operational overhead and raises potential
concerns around data privacy, logging storage, and
performance monitoring. In some real-world
scenarios, such telemetry may not be feasible due to
security or compliance constraints.

Generality and Domain Limitations

Our evaluation focused on algorithmic,
computational tasks. The extension of this framework
to domains such as I/O-bound code, network-heavy
services, database interactions, or even non-code
generation tasks (e.g., natural language generation)
remains uncertain. While the underlying principles
generalize — reward-based fine-tuning with
performance signals, serving optimizations —
domain-specific challenges (e.g., database latency,
external APIs, unpredictable I/O, security
considerations) may complicate direct adoption.

Moreover, the approach assumes access to
controlled execution environments for benchmarking
and performance measurement during fine-tuning. In
many proprietary or closed-source settings, such
execution may be infeasible or unsafe.

Comparison with Other Domains: Lessons from Cross-
Field Research

 Examining related work outside code generation
reveals valuable insights and caveats. For instance, in
domains such as medical image classification (Gao et
al., 2025) or radiographic analysis for disease
detection (Zhang et al., 2022), performance
improvements (e.g., faster inference, lower latency)

are often prioritized — but only when classification
accuracy remains unimpaired. Similarly, hybrid
frameworks combining convolutional and recurrent
networks for tasks like precipitation forecasting
(Wang et al., 2025) or multimedia signal processing
(Feng & Gao, 2025) demonstrate that optimizing for
performance does not guarantee domain-agnostic
robustness. These analogies highlight the need for
domain-specific validation, rigorous testing, and
conservative deployment strategies — especially
where real-world consequences matter.

The success of our framework in the code‑generation
context suggests that co‑design of model fine‑tuning
and serving infrastructure can yield meaningful gains.
This co‑design philosophy resonates with best
practices in systems research, where hardware,
software, and workload considerations are jointly
optimized. In fact, drawing on firmware-level
optimizations — often employed in embedded
systems and signal processing applications —
establishes an important precedent for cross-
disciplinary borrowing.

Future Directions

 Based on our findings and limitations, we propose
several avenues for future research:

● Adaptive λ tuning: Rather than employ a fixed
trade-off parameter across all tasks, future systems
might dynamically adjust the weight between
correctness and performance based on task metadata
(e.g., user-specified priority, code criticality, expected
runtime).

● Domain-aware fine-tuning: Extending the
framework to codebases beyond algorithmic tasks —
e.g., web services, database interactions,
concurrency-heavy applications — to evaluate
generality and limitations.

● Automated readability constraints: Exploring
automated metrics for readability and maintainability
(e.g., cyclomatic complexity, code duplication,
adherence to style guides) to integrate into the
optimization objective, reducing reliance on human
evaluation.

● Cross-platform serving abstraction: Building
portable serving abstractions that apply firmware or
hardware-level optimizations across diverse
accelerator architectures, to reduce deployment
burden.

● Continuous learning loop: Implementing a
monitored production deployment where generated
code performance and use-case feedback feed into
periodic re‑fine‑tuning — adapting models over time
to evolving usage patterns and resource constraints.

American Journal of Applied Science and Technology 282 https://theusajournals.com/index.php/ajast

American Journal of Applied Science and Technology (ISSN: 2771-2745)

Conclusion

 In this article, we have presented a comprehensive,
unified framework that integrates performance-
aware fine‑tuning for code generation with system-
level inference serving optimizations. By combining a
multi-objective fine-tuning methodology — inspired
by learning performance-improving code edits and
efficiency-aware code generation — with a serving
infrastructure optimized through scheduling,
preemption, and firmware-level techniques, we
demonstrate substantial gains in both generated
code performance and inference efficiency. Our
experiments show that code executes significantly
faster, memory usage decreases, latency and
throughput improve, and readability remains
acceptable.

These results highlight the value of co-designing
model training and deployment infrastructure when
aiming for real-world performance improvements. In
contrast to approaches that optimize solely for
correctness or solely for serving efficiency, our
integrated framework shows that carefully balancing
both yields meaningful end-to-end benefits.

At the same time, our analysis draws attention to key
trade‑offs and limitations: the tension between
performance and correctness, the complexity of
serving stacks, domain-specificity, and
maintainability concerns. Real-world adoption will
require careful validation, conservative deployment,
and potentially domain-specific adaptations.

Nevertheless, this work constitutes a significant step
towards closing the gap between research-oriented
code generation and production-grade deployment.
We believe that as LLM-based code generation
becomes more widely used in industry, frameworks
like the one presented here — combining
performance-aware learning with optimized serving
— will become increasingly essential.

References

1. Shypula, A. G.; Madaan, A.; Zeng, Y.; Alon, U.;
Gardner, J. R.; Yang, Y.; Hashemi, M.; Neubig, G.;
Ranganathan, P.; Bastani, O.; Yazdanbakhsh, A.
Learning Performance‑Improving Code Edits. The
Twelfth International Conference on Learning
Representations, Oct. 2023.

2. Huang, D.; Zeng, G.; Dai, J.; Luo, M.; Weng, H.;
Qing, Y.; Cui, H.; Guo, Z.; Zhang, J. M. SwiftCoder:
Enhancing Code Generation in Large Language
Models through Efficiency-Aware Fine-tuning.
arXiv, Mar. 2025.

3. Kim, K.; et al. The Effect of Scheduling and
Preemption on the Efficiency of LLM Inference

Serving. November 2024.

4. Reducing Latency and Enhancing Accuracy in LLM
Inference through Firmware-Level Optimization.
International Journal of Signal Processing,
Embedded Systems and VLSI Design, 2025, 5(2),
26–36.

5. Feng, H.; Gao, Y. Ad Placement Optimization
Algorithm Combined with Machine Learning in
Internet E‑Commerce. 2025.

6. Zhang, T.; Zhang, B.; Zhao, F.; et al. COVID‑19
Localization and Recognition on Chest
Radiographs based on Yolov5 and EfficientNet.
Proceedings of the 7th International Conference
on Intelligent Computing and Signal Processing
(ICSP), 2022, 1827–1830.

7. Gao, Z.; Tian, Y.; Lin, S. C.; et al. A CT Image
Classification Network Framework for Lung
Tumors Based on Pre-trained MobileNetV2
Model and Transfer Learning, and Its Application
and Market Analysis in the Medical Field. arXiv
preprint arXiv:2501.04996, 2025.

8. Wang, Y.; Jia, P.; Shu, Z.; et al. Multidimensional
Precipitation Index Prediction Based on
CNN‑LSTM Hybrid Framework. arXiv preprint
arXiv:2504.20442, 2025.

