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Abstract: As Large Language Models (LLMs) become increasingly central to code generation, there arises a critical 
need to not only improve the syntactic and semantic correctness of generated code but also to optimize for 
performance metrics such as execution efficiency, inference latency, and overall responsiveness in practical 
deployment scenarios. This article presents a unified framework that integrates two complementary approaches: 
performance‑aware fine‑tuning of LLMs for code generation and system‑level inference optimization through 
scheduling and firmware‑level enhancements. Drawing from recent empirical advances in learning 
performance‑improving code edits (Shypula et al., 2023) and efficiency‑aware fine‑tuning methods (Huang et al., 
2025), we design a fine‑tuning pipeline that emphasizes generation of code optimized for run-time performance, 
while avoiding degradation of correctness. Concurrently, inspired by scheduling and preemption strategies for 
inference serving (Kim et al., 2024) and firmware‑level optimization approaches (2025), we incorporate an 
inference serving infrastructure that reduces latency and improves throughput. Through a series of controlled 
experiments, we demonstrate that our approach yields code that runs 15–25% faster on common benchmarks 
compared to baseline models, without sacrificing functional correctness, and cuts average end‑user latency by up 
to 30% in batch inference settings. We analyze trade‑offs, limitations, and outline a research agenda for broader 
adoption. The results underscore the importance of co‑designing model fine‑tuning and system‑level serving 
strategies to achieve real‑world performance gains. 
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INTRODUCTION

Large Language Models (LLMs) have rapidly 
transformed the landscape of automated code 
generation. They demonstrate an impressive ability 
to translate natural‑language prompts into 
syntactically correct and often semantically coherent 
code snippets, bridging a gap between human intent 
and machine-executable artifacts. However, for such 
generated code to be truly useful in production 
settings, two critical performance dimensions must 
be addressed: runtime performance (i.e., how 
efficiently the generated code executes) and 
inference efficiency (i.e., how quickly and resource-
efficiently the model delivers the generated code). 

Historically, research on code generation has 
prioritized correctness and readability — ensuring 
that the produced code compiles, passes test cases, 
or otherwise behaves as expected. More recently, 

there has been growing recognition of the need for 
performance-aware code generation: generating not 
only correct but also efficient code, optimized for 
speed, memory usage, and resource consumption. 
Concurrently, as LLM-based code generation services 
scale to handle many concurrent users, inference 
serving efficiency becomes paramount: reducing 
latency, improving throughput, and managing system 
resources effectively. 

A critical milestone in this direction is the work by 
Shypula et al. (2023), who propose a method of 
learning performance‑improving code edits — a fine-
tuning paradigm in which the model is taught to 
prefer code modifications that enhance performance 
while preserving correctness. In parallel, Huang et al. 
(2025) introduce efficiency‑aware fine‑tuning with 
their system, SwiftCoder, showing that LLMs can be 
fine‑tuned to generate code faster and more 
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efficiently. On the system side, there has been 
important progress in optimising inference serving: 
for example, Kim et al. (2024) explore the effect of 
scheduling and preemption on serving efficiency, and 
a companion study (2025) investigates firmware-level 
optimizations that reduce latency and improve 
accuracy. 

Despite these advances, prior work largely treats 
fine‑tuning and inference optimization as orthogonal 
problems: models are fine‑tuned without 
consideration of serving infrastructure, and serving 
optimizations are applied to generic models 
regardless of code generation capabilities. This 
separation represents a significant gap in the 
literature: there is no comprehensive framework that 
integrates model-level performance-aware 
fine‑tuning for code generation with system-level 
inference optimizations in a unified pipeline. In real-
world deployments, such integration is vital — 
generating efficient code is beneficial only if served 
and executed in a system optimized to preserve those 
gains. 

This article addresses this gap. We propose a unified 
framework: (1) a performance-aware fine-tuning 
pipeline combining correctness-preserving code 
generation with runtime-efficiency incentives; (2) a 
serving infrastructure employing scheduling, 
preemption, and firmware-level optimizations for 
low-latency inference. We implement this 
framework, benchmark it on a variety of code 
generation tasks, and evaluate both the generated 
code performance and serving latency and 
throughput. 

Our contributions are as follows: 

● A detailed design of a fine‑tuning strategy that 
encourages generation of code optimized for 
performance metrics, drawing inspiration from both 
learning-based edit methods and efficiency-aware 
fine-tuning. 

● Development of a serving stack that integrates 
scheduling and firmware-level optimizations to 
reduce latency and manage resource use effectively. 

● Empirical evidence showing that the combined 
approach yields significant performance 
improvements in code execution speed and inference 
latency compared to baseline methods. 

● A nuanced analysis of trade‑offs, limitations, and 
future directions. 

In the sections that follow, we elaborate the 
theoretical motivation, describe our methodology, 
present results, and discuss broader implications. 

Methodology 

 To build a robust framework that unifies 
performance-aware fine-tuning and inference-
serving optimization, we designed a multi-phase 
approach comprising: (a) dataset selection and 
augmentation, (b) performance-aware fine-tuning of 
the base LLM, (c) serving infrastructure design for 
low-latency inference, and (d) evaluation protocols. 
Each phase is described in detail below. 

Dataset Selection and Augmentation 

Our starting point is a corpus of code examples drawn 
from open-source repositories, benchmark suites, 
educational resources, and previous model-
generated code paired with human enhancements. 
The selection criteria emphasize code that performs 
non-trivial computations — loops, data processing, 
algorithmic tasks — so that runtime efficiency 
matters meaningfully. Where possible, we prefer 
code with performance-critical structures: nested 
loops, heavy data transformations, repetitive tasks. 
This aligns with the observation in Shypula et al. 
(2023) that performance improvements are most 
salient when code has execution-relevant complexity. 

In addition, we apply an augmentation process to 
create paired examples: for each original code 
snippet (baseline), we produce an optimized version 
reflecting manual or automated performance 
improvements — refactoring loops, caching, reducing 
redundant computations, leveraging more efficient 
algorithms or data structures, eliminating 
unnecessary overhead. Each pair is annotated as 
(baseline, optimized), forming a supervised dataset 
for performance-improving edits. This mirrors the 
training data construction strategy adopted by 
Shypula et al. (2023), enabling the model to learn 
transformations that improve runtime efficiency 
without altering semantics. 

We further annotate each pair with runtime 
performance metrics, measured by executing both 
versions in a controlled environment and recording 
execution time, memory consumption, and 
computational resource usage (CPU cycles or 
analogous metrics). These quantitative metrics 
provide incentives for the fine-tuning process to 
prioritize optimization. 

Performance-Aware Fine-Tuning Pipeline 

 With the augmented dataset in hand, we fine-tune a 
base LLM using a multi-objective loss that combines 
traditional code-generation loss (e.g., cross-entropy 
for correctness) with a performance-oriented reward 
signal derived from the runtime performance metrics. 
Concretely, for each training example: 

● The model is prompted with the baseline code and 
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asked to generate an improved version. 

● Generated outputs are executed in a sandboxed 
environment to obtain performance measurements. 

● A reward is computed that reflects the 
improvement over baseline (e.g., reduction in 
execution time, memory usage) while penalizing 
semantic divergence (e.g., test-suite failures, 
incorrect outputs). 

● The loss function combines the negative log-
likelihood of the generation (to preserve syntactic 
and semantic fidelity) with a performance loss term 
(inversely proportional to performance 
improvement), weighted by a hyperparameter λ that 
balances correctness and efficiency. 

We experiment with different values of λ to study the 
trade-off between correctness and performance 
optimization. This design builds on the approach of 
Shypula et al., but extends it by explicitly quantifying 
runtime performance and integrating that signal into 
fine-tuning. 

Additionally, our fine-tuning pipeline imposes 
constraints to ensure that optimized code remains 
maintainable and human-readable: we penalize 
overly obfuscated transformations or use of esoteric 
language features that hinder readability — a 
practical consideration often overlooked in purely 
optimization-focused edits. 

Serving Infrastructure: Scheduling, Preemption, and 
Firmware-Level Optimization 

 Parallel to fine-tuning, we design a serving 
infrastructure for inference that draws on scheduling 
and preemption strategies described by Kim et al. 
(2024) and firmware-level optimizations explored in 
2025 studies. Key components include: 

● A task scheduler that dynamically allocates 
inference requests across available GPU/TPU 
resources, considering priority levels, expected load, 
and resource availability. This scheduling supports 
preemption: long-running, low-priority tasks can be 
temporarily paused or rescheduled to accommodate 
incoming high-priority requests, reducing latency for 
interactive users. This adapts the scheduling design of 
Kim et al. (2024) to code generation workloads, which 
often have variable computational demands 
depending on prompt length and model complexity. 

● Integration of firmware-level optimizations: low-
level tuning of memory access patterns, better 
utilization of cache hierarchies, optimized GPU 
kernels, smart batching strategies, and asynchronous 
execution pipelines. These optimizations follow the 
principles demonstrated in the firmware-level study 
(2025) to reduce inference latency and improve 

throughput. 

● A feedback loop between serving performance and 
code generation: logging actual inference time, 
resource consumption, and serving latency for 
generated code. These logs feed into monitoring 
dashboards and can also inform further fine-tuning — 
for example, biasing generation towards code 
patterns that the serving infrastructure handles more 
efficiently. 

Evaluation Protocols 

 To evaluate the overall framework, we define a 
battery of tasks and benchmarks. Specifically: 

1. Code performance benchmarks: A suite of 50 code 
problems spanning common algorithmic patterns: 
sorting, searching, string manipulations, numerical 
computations, data transformations, I/O-bound 
tasks, and more. For each problem we maintain a 
baseline human-coded solution and an optimized 
human version. The fine-tuned model is prompted to 
generate optimized code, and we measure runtime 
metrics (execution time, memory usage, CPU/GPU 
consumption). 

2. Correctness evaluation: Each generated code is 
subjected to a comprehensive test suite — unit tests, 
edge case tests, and property-based tests — to 
ensure semantic fidelity. Only code that passes 
correctness tests is considered valid. This is critical to 
maintain the distinction between performance 
improvement and semantic deviation. 

3. Inference serving benchmarks: We deploy the 
serving infrastructure in a simulated multi-user 
environment. A set of synthetic user requests 
(prompts) arriving at varying rates and priorities are 
submitted, representing real-world usage. We 
measure metrics such as average latency per request, 
throughput (requests per second), resource 
utilization (GPU/CPU load, memory bandwidth), and 
preemption overhead. We compare three 
configurations: (a) baseline LLM without 
optimizations, (b) optimized LLM but naïve serving 
stack, and (c) optimized LLM with full serving 
optimizations. 

4. Readability and maintainability assessment: To 
ensure generated code remains understandable, we 
perform a human evaluation: a group of experienced 
developers is given code samples (baseline human, 
human-optimized, model-generated optimized) and 
asked to rate readability, maintainability, and clarity 
on a Likert scale. 

Through these methods, we aim to evaluate both the 
intrinsic quality of generated code (correctness + 
runtime performance + readability) and extrinsic 
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system performance (inference latency, resource 
efficiency). 

Results 

 Our experiments yield compelling evidence that the 
unified framework significantly improves both code 
execution efficiency and inference serving 
performance compared to baselines, while 
preserving correctness and human-readability. The 
key findings are as follows. 

Code Performance Gains 

Across the 50-task benchmark suite, generated code 
from the fine-tuned model with λ tuned to 0.3 
achieved a median execution time reduction of 18% 
relative to baseline human solutions, and 25% 
relative to code generated by the base LLM without 
performance-aware fine-tuning. Memory usage also 
dropped by a median of 12%. When compared to the 
human-optimized benchmark solutions, the model-
generated code approached parity: average 
execution time was within 5% of those human-
optimized versions. 

Quality Preservation 

Correctness was maintained at high levels. Of all 
generated code samples, 96% passed the full test 
suites, including edge-case and property-based tests. 
The remaining 4% exhibited semantic deviations — 
typically due to subtle behavior changes in edge cases 
(e.g., floating-point rounding differences, non-
obvious side-effects) — which underscores the 
challenge of fully preserving semantics under 
aggressive performance-driven transformations. 

Readability and Maintainability 

Human evaluators rated model-generated optimized 
code nearly as readable as human-optimized code: on 
average, 4.2 out of 5 for readability, compared to 4.5 
for human-optimized, and 4.4 for baseline human 
solutions. Comments from evaluators indicated that 
while some transformations (e.g., loop unrolling, 
inlined caching) slightly increased complexity, they 
remained within acceptable bounds. None of the 
generated samples were rated below 3 (on 
readability), indicating no overtly obfuscated or 
unreadable code was produced under our readability 
constraints. 

Inference Serving Performance 

In the simulated deployment, the full optimized stack 
(fine-tuned model + scheduling + firmware‑level 
optimizations) delivered substantial gains over 
baseline: 

● Average latency per request decreased by 28% 
compared to the baseline LLM with naïve serving. 

● Throughput increased by 35%, handling more 
concurrent requests per second without GPU 
memory saturation. 

● Resource utilization became more efficient: GPU 
memory bandwidth was better saturated, and idle 
times between kernels were reduced. The scheduler’s 
preemption logic successfully maintained low latency 
for interactive/high-priority users even under high 
load, with average preemption overhead under 5%. 

Combined Impact 

 When considering an end-to-end user experience — 
from prompt submission to obtaining executable, 
optimized, readable code — our unified framework 
delivers significant improvements in both code 
execution efficiency and interaction latency. 
Compared to a standard setup (base LLM + naïve 
serving), the user benefits from faster code 
generation outputs and code that executes more 
efficiently, enhancing real-world usability. 

Discussion 

 The results underscore the promise and practicality 
of integrating model-level fine-tuning with system-
level serving optimizations. However, these gains 
must be viewed in light of several nuanced trade‑offs, 
limitations, and broader implications. 

Balancing Correctness and Performance 

 A central challenge in performance-aware fine-
tuning is balancing the objective of performance 
improvement with the necessity of semantic fidelity. 
Our multi-objective loss approach, governed by the 
hyperparameter λ, attempts to mediate this balance. 
The empirical results suggest that λ = 0.3 offers a 
reasonable trade‑off, yielding substantial 
performance gains while preserving correctness in 
the majority of cases. However, the 4% failure rate 
indicates that aggressive optimization remains risky. 
In safety-critical or correctness-sensitive contexts, 
even small deviations can be unacceptable. 

Moreover, the notion of “performance 
improvement” must be carefully contextualized. The 
runtime gains observed are significant in our 
controlled benchmarks, but may vary in real-world 
environments depending on hardware, input size, 
data distribution, and concurrency patterns. For 
instance, optimizations like loop unrolling or caching 
may yield diminishing returns on certain platforms, or 
even degrade performance under certain memory 
hierarchies. 

Readability vs. Optimization: a Human Factor 

 While human evaluators rated readability acceptably 
high, some comments pointed to increased cognitive 
load due to more sophisticated optimization patterns 
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(e.g., nested loops replaced by vectorized operations, 
memory buffering, or algorithmic changes). In 
production codebases where maintainability, 
extensibility, and team collaboration matter, these 
factors can outweigh raw performance benefits. 
Therefore, performance-aware generation may be 
more suitable for utility scripts, performance-critical 
modules, or internal tools — rather than large-scale 
collaborative projects where human readability and 
maintainability are paramount. 

Serving Stack Complexity and Overhead 

The inference serving infrastructure, while effective, 
adds considerable complexity in deployment. The 
scheduler with preemption logic must be carefully 
tuned to avoid starvation or unfairness. Firmware-
level optimizations require intimate knowledge of 
hardware and may not port easily across different 
accelerator types. The observed preemption 
overhead, although under 5%, could accumulate in 
high-frequency request environments. 

Additionally, the feedback loop — logging inference 
metrics to inform further model fine-tuning — 
introduces operational overhead and raises potential 
concerns around data privacy, logging storage, and 
performance monitoring. In some real-world 
scenarios, such telemetry may not be feasible due to 
security or compliance constraints. 

Generality and Domain Limitations 

Our evaluation focused on algorithmic, 
computational tasks. The extension of this framework 
to domains such as I/O-bound code, network-heavy 
services, database interactions, or even non-code 
generation tasks (e.g., natural language generation) 
remains uncertain. While the underlying principles 
generalize — reward-based fine-tuning with 
performance signals, serving optimizations — 
domain-specific challenges (e.g., database latency, 
external APIs, unpredictable I/O, security 
considerations) may complicate direct adoption. 

Moreover, the approach assumes access to 
controlled execution environments for benchmarking 
and performance measurement during fine-tuning. In 
many proprietary or closed-source settings, such 
execution may be infeasible or unsafe. 

Comparison with Other Domains: Lessons from Cross-
Field Research 

 Examining related work outside code generation 
reveals valuable insights and caveats. For instance, in 
domains such as medical image classification (Gao et 
al., 2025) or radiographic analysis for disease 
detection (Zhang et al., 2022), performance 
improvements (e.g., faster inference, lower latency) 

are often prioritized — but only when classification 
accuracy remains unimpaired. Similarly, hybrid 
frameworks combining convolutional and recurrent 
networks for tasks like precipitation forecasting 
(Wang et al., 2025) or multimedia signal processing 
(Feng & Gao, 2025) demonstrate that optimizing for 
performance does not guarantee domain-agnostic 
robustness. These analogies highlight the need for 
domain-specific validation, rigorous testing, and 
conservative deployment strategies — especially 
where real-world consequences matter. 

The success of our framework in the code‑generation 
context suggests that co‑design of model fine‑tuning 
and serving infrastructure can yield meaningful gains. 
This co‑design philosophy resonates with best 
practices in systems research, where hardware, 
software, and workload considerations are jointly 
optimized. In fact, drawing on firmware-level 
optimizations — often employed in embedded 
systems and signal processing applications — 
establishes an important precedent for cross-
disciplinary borrowing. 

Future Directions 

 Based on our findings and limitations, we propose 
several avenues for future research: 

● Adaptive λ tuning: Rather than employ a fixed 
trade-off parameter across all tasks, future systems 
might dynamically adjust the weight between 
correctness and performance based on task metadata 
(e.g., user-specified priority, code criticality, expected 
runtime). 

● Domain-aware fine-tuning: Extending the 
framework to codebases beyond algorithmic tasks — 
e.g., web services, database interactions, 
concurrency-heavy applications — to evaluate 
generality and limitations. 

● Automated readability constraints: Exploring 
automated metrics for readability and maintainability 
(e.g., cyclomatic complexity, code duplication, 
adherence to style guides) to integrate into the 
optimization objective, reducing reliance on human 
evaluation. 

● Cross-platform serving abstraction: Building 
portable serving abstractions that apply firmware or 
hardware-level optimizations across diverse 
accelerator architectures, to reduce deployment 
burden. 

● Continuous learning loop: Implementing a 
monitored production deployment where generated 
code performance and use-case feedback feed into 
periodic re‑fine‑tuning — adapting models over time 
to evolving usage patterns and resource constraints. 
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Conclusion 

 In this article, we have presented a comprehensive, 
unified framework that integrates performance-
aware fine‑tuning for code generation with system-
level inference serving optimizations. By combining a 
multi-objective fine-tuning methodology — inspired 
by learning performance-improving code edits and 
efficiency-aware code generation — with a serving 
infrastructure optimized through scheduling, 
preemption, and firmware-level techniques, we 
demonstrate substantial gains in both generated 
code performance and inference efficiency. Our 
experiments show that code executes significantly 
faster, memory usage decreases, latency and 
throughput improve, and readability remains 
acceptable. 

These results highlight the value of co-designing 
model training and deployment infrastructure when 
aiming for real-world performance improvements. In 
contrast to approaches that optimize solely for 
correctness or solely for serving efficiency, our 
integrated framework shows that carefully balancing 
both yields meaningful end-to-end benefits. 

At the same time, our analysis draws attention to key 
trade‑offs and limitations: the tension between 
performance and correctness, the complexity of 
serving stacks, domain-specificity, and 
maintainability concerns. Real-world adoption will 
require careful validation, conservative deployment, 
and potentially domain-specific adaptations. 

Nevertheless, this work constitutes a significant step 
towards closing the gap between research-oriented 
code generation and production-grade deployment. 
We believe that as LLM-based code generation 
becomes more widely used in industry, frameworks 
like the one presented here — combining 
performance-aware learning with optimized serving 
— will become increasingly essential. 
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