
American Journal of Applied Science and Technology 63 https://theusajournals.com/index.php/ajast 

 
 

 VOLUME Vol.05 Issue 09 2025 

PAGE NO. 63-67 

DOI 10.37547/ajast/Volume05Issue09-14 

 
 
 
 

Study Of The Electronic Structure Of The Vanadyl (Ii) 

Monochloroacetate Monomer Molecule 
 

Muzafarov Farux Ixtiyorovich 

Bukhara State Medical Institute, Uzbekistan 

 

Received: 31 July 2025; Accepted: 28 August 2025; Published: 30 September 2025 

  

Abstract: In this work, density functional theory (DFT)–based quantum-chemical calculations were employed to 
investigate the molecular and electronic structure of vanadyl(II) acetate and vanadyl(II) monochloroacetate 
monohydrates. While the soluble tetrameric form of vanadyl(II) acetate hemihydrate has been experimentally 
synthesized, the monomeric monochloroacetate derivative has not yet been synthesized under laboratory 
conditions. To elucidate the reason for this synthetic inaccessibility, optimized geometries, bond parameters, and 
Mulliken charge distributions were determined, and the frontier molecular orbitals (HOMO and LUMO) were 
analyzed. The calculated HOMO–LUMO energy gap (ΔE), global reactivity descriptors, and potential energy 
distributions provided insight into charge-transfer processes and stability trends. Comparative analysis revealed 
that the monomeric monochloroacetate exhibits a larger HOMO–LUMO gap, suggesting enhanced electronic 
stability; however, cyclic bidentate coordination of the carboxylate group induces structural distortions within the 
vanadium coordination sphere. This electronic and geometric strain is identified as the most probable reason for 
the failure to synthesize vanadyl(II) monochloroacetate experimentally. The present findings highlight the 
importance of integrating quantum-chemical methods with experimental approaches for studying vanadyl 
carboxylates and related transition-metal complexes. 

 

Keywords: Vanadyl carboxylates; vanadyl acetate; vanadyl monochloroacetate; density functional theory (DFT); 
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INTRODUCTION:

In recent years, quantum-chemical calculation (QCC) 
methods have undoubtedly become the most 
universal and reliable means of studying a wide 
variety of molecular and electronic structures, as well 
as for determining the reactivity of substances that 
cannot be synthesized despite repeated experimental 
attempts under real laboratory conditions. Among 
the special types of such compounds that require 
simultaneous theoretical and experimental 
investigation, along with comparison of their results 
to establish the composition, structure, and 
coordination features of the ligand and the central 
atom, are the carboxylates of the vanadyl ion. 

It should be noted that the soluble form of vanadyl(II) 
acetate hemihydrate has been synthesized, and its 
tetrameric structure, corresponding to the general 
formula [VO(CH₃COO)₂·0.5H₂O]ₙ (where n = 4), was 
established by comparing the unusual experimental 

EPR spectrum (consisting of 29 equidistant lines 
instead of 8) with theoretical calculations [2]. 
However, neither the reason for the formation of 
specifically the tetrameric form—rather than 
monomeric or dimeric analogues—nor its diverse 
physicochemical, spectral, and magnetic properties 
that distinguish this compound from its polymeric 
precursors have yet been investigated or clarified. 

The aim of the present study is to investigate the 
possible molecular and electronic structure, the most 
probable function of the carboxylate group, and the 
reason for the possibility or impossibility of forming 
vanadyl(II) monochloroacetate (n = 1) using quantum-
chemical calculations (QCC). 

Based on the calculations performed, the theoretical 
values of bond lengths and bond angles were 
established, and the atomic charge distribution was 
determined using Mulliken population analysis. In 
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addition, the potential energy distribution (PED) was 
obtained within the framework of density functional 
theory (DFT). The energy differences between the 
highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO), as well 
as the magnitude of this gap, were used to interpret 
the nature of charge transfer in the studied molecule. 

The theoretical quantum-chemical calculations have 
revealed the nature of the frontier molecular orbitals 
of the vanadyl(II) carboxylate complex in both the 
ground and excited states. The analysis of the highest 
occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO) provides 
important insights into the electronic configuration 
and potential charge-transfer processes within the 
complex. In particular, the spatial distribution of 
these orbitals indicates that the carboxylate ligand 

plays a dominant role in electronic transitions, as well 
as its contribution to the stabilization of the 
coordination sphere around the vanadyl(II) center. 

The table presents the quantum-chemical 
parameters of vanadyl(II) monomeric 
monochloroacetate: electronic chemical potential 
(Pi), absolute electronegativity (χ), absolute hardness 
(η), absolute softness (σ), global softness (S), global 
electrophilicity (ω), and the additional electronic 
charge (ΔNmax), calculated using the equations 
reported in [2]. Based on the magnitude of the 
molecular orbital energy gap (ΔE), it can be concluded 
that the monomeric form of monochloroacetate is 
more stable than the vanadyl(II) acetate monomer. 

Calculated quantum-chemical parameters of the 
monomeric vanadyl(II) monochloroacetate 
monohydrate molecule* 

Table 1 

Compound  
E(HOMO) 

eV 

E(LUMO) 

eV 
ΔE χ η σ -Pi S ω ΔNmax 

Vanadyl acetate 

monohydrate 

-

0.1586 

-

0.0722 
0,0864 0,1154 0,0432 23,148 

-

0,1154 
11,57 0,154 2,67 

Vanadyl 

monochloroacetate 

monohydrate 

 

-

0.2752 

-

0.1018 
0.1733 

-

0.0866 
0.0866 11,53 0,0866 5,76 0,043 -1 

Table 1 summarizes, for comparison, the results of quantum-chemical calculations 

for the vanadyl(II) acetate monohydrate monomer. 

 

Parameter Symbol Definition 

Electronic chemical 

potential 
Pi 

Measure of the escaping tendency of electrons 

from equilibrium; defined as the negative of 

electronegativity. 

Absolute 

electronegativity 
χ 

Tendency of a molecule to attract electrons, 

defined as χ = –(EHOMO + ELUMO)/2. 

Absolute hardness η 
Resistance to charge transfer, defined as η = 

(ELUMO – EHOMO)/2. 

Absolute softness σ Inverse of hardness, σ = 1/η. 

Global softness S 
Alternative measure of molecular polarizability, 

S = 1/(2η). 

Global electrophilicity ω 
Electrophilic character of the molecule, ω = 

μ²/2η. 
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Additional electronic 

charge 
ΔNmax 

Maximum number of electrons that a system may 

accept, ΔNmax = –μ/η. 

 

 

 

E(HOMO)= -0.1586 eV  

Electronic structure of the vanadyl 

monochloroacetate molecule: 

LUMO. 

 

E(HOMO)= -0.2752 eV  

Electronic structure of the vanadyl 

monochloroacetate molecule: 

HOMO. 

 

 

E(LUMO)= -0.0722 eV 

Electronic structure of the vanadyl 

acetate molecule: LUMO. 

 

E(LUMO)= -0.1018eV 

Electronic structure of the vanadyl 

monochloroacetate molecule: 

LUMO 
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Figure X presents the energy level 

diagram of vanadyl acetate, showing 

the distribution of the frontier 

molecular orbitals (HOMO and 

LUMO). 

 

Figure X illustrates the energy level 

diagram of vanadyl 

monochloroacetate, highlighting the 

frontier molecular orbitals (HOMO 

and LUMO). The calculated 

HOMO–LUMO energy gap (ΔE) 

provides insight into the electronic 

stability and charge-transfer 

characteristics of the molecule.  

CONCLUSION 

According to the results of quantum-chemical 
calculations, the most probable structure of the 
vanadyl monomeric monochloroacetate was 
determined, which could not be synthesized 
experimentally. The compound exhibits cyclic 
bidentate coordination of the carboxylate group, 
experiencing electronic and structural instability in 
the equatorial plane of the vanadium coordination 
environment due to the displacement of the central 
vanadium atom from the coordination plane toward 
the strongly bound oxygen atom. This appears to be 
the most likely reason for the inability to form the 
monomeric vanadyl monochloroacetate and for the 
experimental failure to synthesize this compound. 
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